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When pure solvent is separated from a solution of non-zero concentration cb by a 
semi-permeable membrane, permeable to solvent (water) but not to solute, water 
flows osmotically across the membrane towards the solution. I ts  velocity J is given 
by J = PAC, where P is a constant and AC is the concentration difference across the 
membrane. Because the osmotic flow advects solute away from the membrane, AC is 
usually less than Cb, by a factor y which depends on the thickness of and flow in a 
concentration boundary layer. In  this paper the layer is analysed on the assumption 
that the stirring motions in the bulk solution, which count,er the osmotic advection, 
can be represented as two-dimensional stagnation-point flow. The steady-state results 
are compared with those of the standard physiological model in which the layer has a 
given thickness 6 and the osmotic advection is countered only by diffusion. It turns 
out that the standard theory, although mechanistically inadequate, accurately pre- 
dicts the value of y over a wide range of values of the governing parameter f3 = PC, SID 
(where D is the solute diffusivity) if 6 is given by 

6 =  1.59(--) D * v *  (2)  , 

where v is the kinematic viscosityof the fluid and a is the stirring parameter. The final 
approach to the steady state is also analysed, and it is shown to be achieved in a time 
scale (D/v)*/ak'  where k' is a dimensionless number whose dependence on /3 is com- 
puted. Moreover, if /3 exceeds a certain critical value (z lo),  the approach to the 
steady state is not monotonic but takes the form of a damped oscillation (in practice, 
however, p is unlikely to rise significantly above 1 ) .  The theory is extended to the case 
where the solute concentration is non-zero on both sides of the membrane and in that 
case it is shown that J is bounded as /3 + co. 

1. Introduction 
All biological membranes, and many synthetic ones, are to some extent semi- 

permeable; that  is, they let through water and other small molecular species, but are 
impermeable to  all solutes whose molecules exceed a certain size. Thus, when two 
solutions of such larger molecules are separated by a semi-permeable membrane, 
with a greater concentration of solute on one side than on the other, the fact that the 
chemical potentials on the two sides will tend to equilibrium causes water to flow 
across the membrane towards the side with greater solute concentration. This is the 
phenomenon of osmosis; i t  still occurs to  a certain extent when the solute molecules 
can cross the membrane but experience more resistance in doing so than the water 
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FIGURE 1. Sketch of the ‘ unstirred layer’ separating pure water from a. solution in which the 
solute concentration C far from the semi-permeable membrane (s.p.m.) is C,. The osmotic wat.er 
flow advects solute away from the membrane, thereby reducing the concent,rat,ion at the membrane 
to a value C(0) less than Cb; hence the osmotic flux, given by (1.1) wit.h AC = C(0)  not C,, is less 
than might have been predicted. The standard model treats the nnstirred layer as a region of given 
thickness 8 in which the osmotic advection is balanced only by back diffusion; the concentration 
distribution in the layer would then resemble the dash-dot curve rat,her than the anticipated solid 
curve. 

molecules. Osmosis occurs not only across the membranes of all living cells but also 
into and out of organs in the body, such as kidney tubules, blood capillaries, the 
intestines, etc., whose walls are made up of one or more layers of cells (epithelia): 
in those cases the pathways followed by water or solute molecules may be rather 
complicated, involving passage either through or between the cells. Moreover osmosis 
is often associated with electrokinetic phenomena and with active transport, both 
important areas of modern biological research. 

I n  order to be able to  interpret experiments on these processes one needs to  knou- 
the ‘osmotic permeability’ of the membranes concerned. If AC is the difference in 
osmolarity (effectively concentration) across a semi-permeable membrane and if J is 
the water flux per unit area (i.e. the average velocity) through it,  then 

where P is called the osmotic permeability of the membrane (equation (1.1) is based 
on the assumption that there are no other driving forces for water f u x ,  such as a 
difference in hydrostatic pressure or in electrostatic potential). According to the 
standard equations of irreversible thermodynamics (see for example House 1974), P 
is a constant for an isothermal system, independent of the nature or the concentration 
of the impermeant solute. For such a membrane one might imagine that i t  would be 
quite straightforward to record the solute concentrations in the solutions on the t2wo 
sides of the membrane, to measure J ,  and to use ( 1 . 1 )  to infer P. 

However, consider an experiment in which a plane semi-permeable membrane 
separates two chambers, one containing pure water (solute concentration C = 0 )  and 
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one containing a solution of a non-electrolyte (e.g. sucrose) a t  concentration C = Cb. 
Then the osmotic flow will itself advect solute away from the membrane, and although 
this effect will be opposed, by diffusion and by stirring motions in the bulk solution, 
there will be a reduction in concentration a t  the membrane itself, a reduction in flow 
and hence an underestimate of P (figure 1). It is important to  be able to predict the 
extent of this reduction. 

The region in which C is reduced below C, is referred to in the physiological literature 
as an ‘unstirred layer’. The bulk solution in most experiments is stirred in some way, 
but near the membrane the stirring motion is inevitably parallel to it and is ineffective 
a t  mixing the solution. The standard physiological model (first expounded clearly by 
Dainty 1963) is of a layer of given thickness S, which may be known from experiments 
in which the concentration distribution is measured directly (see Lerche 1976 for 
example). Then the effect of the layer is analysed on the assumptions that the only 
motion in the layer is the osmotic flux itself and that the solute concentration C in the 
layer depends only on the distance y from the membrane and on the time (see figure 1 ). 
This model is briefly outlined in 5 2,  but it gives no insight into how 6 is actually 
determined; the model will be applicable only when there is known to be an unstirrable 
layer next to  the membrane; for example the layer of porous tissue on which many 
epithelia are mounted (Pedley & Fischbarg 1980). In  other circumstances the stirring 
motions will interact with the osmotic flow in the formation of the layer, a concentra- 
tion boundary layer. The main purpose of the present paper is to investigate this 
interaction. In  particular we shall ask whether an effective boundary (or unstirred) 
layer thickness S can be defined, and whether a formula similar to that derived from 
the standard model (equation (2.4) below) can be used to  assess the effect of the layer 
on the osmotic flow. 

It is clear that  the thickness and effect of the concentration boundary layer will be 
determined by both the strength and the nature of the stirring motions; indeed, this 
was explicitly recognized by Dainty ( 1  963) before he developed the simple model of 
5 2. I n  this paper we choose to represent the stirring motion as a simple stagnation- 
point flow against the infinite plane y = 0 occupied by the semi-permeable membrane. 
Such a model would be directly applicable in an experiment where the stirring was 
generated by two counter-rotating stirrers (figure 2a) .  Other types of flow could also 
be considered (and will be in subsequent papers). One possibility is that the membrane 
forms part of a solid wall past which the flow (in the absence of osmosis) is unidirec- 
tional, as in a tube or in a circular container with a concentric stirrer (figures 2b ,  c ) .  
Another possibility is that the stirring motion contains random fluctuations (figure 
2 d ) .  Yet another is that the membrane is vertical and the buoyancy force associated 
with the lower solute concentration in the boundary layer drives a natural convection 
flow (figure 2 e ;  cf. Everitt & Haydon 1969). However, the present model allows for a 
relatively simple complete solution to both the steady-state and the unsteady prob- 
lems, and is expected to give results which are qualitatively similar to those of a t  
least some of the other problems. 

Theories similar to some of those proposed above have previously been performed 
in investigations into the desalination of sea-water by the ‘reverse osmosis ’ method. 
In this niethod, sea-water is pumped through channels or tubes with semi-permeable 
walls; the pressure in the sea-water is greater than that in the fresh water outside by 
an amount that is sufficient to overcome the osmotic pressure difference between the 
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c.b.1. 

FIGURE 2. Sketches of various ways in which the bulk solution may be stirred so as to determine 
the concentration boundary layer (c.b.1.) next to the semi-permeable membrane (5.p.m.). (a) 
Stagnation-point flow, treated in this paper; (6) pipe or channel flow; (c) asingle concentric stirrer; 
(d) random motions (turbulence); (e) natural convection driven by the relative buoyancy of the 
solute-poor fluid near the membrane. 

two fluids, so an outward water flux takes place. Unfortunately, however, solute 
builds up in the Concentration boundary layer (' concentration polarization '), increas- 
ing the concentration difference across the membrane, and inhibiting the waterflow. 
Such systems have been analysed by (among others) Hendricks & Williams (1971), 
Derzansky & Gill (1974) and Johnson & Acrivos (1969). However, these authors all 
considered the case of flow towards the membrane, causing a build-up of solute; the 
nonlinear nature of the fluid-mechanical problem means that the results are not 
directly applicable to the present case in which solute is swept away from the mem- 
brane by the osmosis. Furthermore, no one as far as I know has considered the case 
of stagnation-point flow, in which many details can be derived analytically. 

2. The standard ' unstirred layer' model 
According to this model, the solute concentration C(y,t )  in the unstirred layer 

(0 < y < 8) satisfies the one-dimensional convection-diffusion equation, together with 
the boundary conditions that the membrane is impermeable to solute and that 
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FIGURE 3. Solution of the initial-value problem defined by (2.1) to (2.3) with C(y, 0) = 0, in the 
case where /3 = 100. C(z, t ) / C ,  is plotted against D t / P  for two values of x/6. Note how the con- 
centration overshoots its final steady-state value. (I em grateful to Dr D. L. s. McElwain for 
computing these results.) 

C(S,t) = Cb; J is given by (1.1) with AC = C(0,t). There should also be an initial 
condition such as C(y, 0) = 0 (0 < y < S), which would apply if the concentration a t  
y = S were suddenly raised to the value Cb a t  time t = 0. 

After an initial adjustment, the concentration distribution, and hence J ,  settles 
down to a steady state, in which 

(2.1) = cS(y) = Cbexp [ ( J S / D )  (!/-s)l, 

J, = P c b  exp ( - J, S/D) .  

where D is the solute diffusivity, while (1.1) gives the steady water flux J,: 

(2.2) 

This is the solution that was given by Dainty (1963). Pedley & Fischbarg (1978) 
expressed i t  in dimensionless form, writing 

Here p is a parameter which is known when the system is known, while y represents 
the derived osmotic flux; y is equal to the ratio of the actual osmotic flux to the flux 
which would be expected if (1.1 ) were used with AC = Cb. In  an experiment one would 
measure J and infer P; in terms of the dimensionless parameters this is equivalent to 
measuring the product py and using (2.4) to infer y (and hence p) .  

The steady concentration distribution in the layer has commonly been supposed to  
resemble the solid curve in figure 1 (see Dainty 1963, for example). However, the 
distribution (2 .1)  predicted by this model actually resembles the dash-dot curve in 
figure 1, with steepest concentration gradient a t  the outer edge of the layer not the 
wall. The present model does give a distribution resembling the solid curve. 

The unsteady, initial-value problem has been solved numerically by Schafer, Patlak 
& Andreoli (1974); the time scale ts for the decay of perturbations to the steady state 
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(KC~/D)  was obtained analytically by Pedley & Fischbarg (1978), who made the 
interesting prediction that if p is large enough (greater than about 27) the approach 
to the steady state is not monotonic but involves an overshoot. This was not revealed 
by Schafer et al. ( 1  974), but some more recent computations by Dr D. L. S. McElwain 
have confirmed it (figure 3) .  As Pedley & Fischbarg (1978) point out, the values of /i’ 
appropriate to cell membranes are likely to be rather small ( < 0.1, say) so that the 
oscillatory behaviour is unlikely to be observed and y would not fall below about 0-9, 
indicating an error of no more than 10 24 in estimating P.  However, if the membrane 
is a (leaky) epithelium and sucrose the solute, /3 can rise as high as 7.5 ( y  = 0.21), 
and in carefully cont’rolled laboratory conditions it may be possible to raise i t  still 
higher. 

3. Formulation and non-dimensionalization 
The membrane is again taken to  occupy the (infinite) plane y = 0. In  the absence 

of osmosis the motion is taken to  be two-dimensional stagnation-point flow so that 
far from the plane the velocity field is given by 

u- ax, v -  -ay as y+m, (3.1) 

where x is measured along the plane, (u, v) are the velocity components in the (2, y) 
directions respectively, and a is a constant (the stirring parameter). The velocity field 
satisfies the unsteady two-dimensional Navier-Stokes equations for an incompressible 
viscous fluid, and the concentration C(x ,  y, t )  of solute satisfies 

Ct + uC, + vC, = D(C,, + CUT,). (3.2) 

The boundary conditions on u, v at the wall are 

u = 0, v = J(x,t) a t  y =  0, 

where J ( x ,  t )  is once more the ostnotic flux per unit area, given in terms of C ( x ,  0, t )  by 

J ( z ,  t )  = PC(x, 0 , t ) .  (3.3) 

The boundary conditions on C are now 

C+C,  as y - t m  and JC-DC,=O at y = O ;  (3.4) 

the second of these represents the impermeability of the wall to solute. An initial con- 
dition is also required for a fully posed initial-value problem. 

The advantage of choosing stagnation-point flow is that  the solution for v in the 
absence of osmosis is independent of x, so i t  is possible for the normal velocity a t  the 
wall, J ,  also to be independent of x without affecting the x dependence of u and v;  
C too can now be independent of x. We accordingly eliminate x and non-dimensionalize 
the variables as follows: 
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where v is the kinematic viscosity of the fluid and a prime denotes differentiation with 
respect to 7. The problem is then transformed into the following pair of differential 
equations, 

f”’ + f f  + 1 - f ‘ 2  = f;, (3.5a) 

g“ + ufg‘ = V g T ,  ( 3 . 5 b )  

where CT = v / D  is the Schmidt number of the fluid; the boundary conditions are 

f’(CO,7) = 1, f ’ (o ,7 )  = 0, f ( 0 , T )  = - V(?), ( 3 . 6 ~ )  

where 

The final relation stems from (3.3), which becomes 

where 
r V ( 7 )  = P,S(O, 7) 

PC, v 4 
P, = (2) 

(3 .6b )  

We may note that (u/x)f  is the length-scale for the viscous boundary-layer thickness 
in standard stagnation-point flow, so PI? is similar to /3 (equation 2.3)  but with this 
scale in place of S. To achieve a quantity truly analogous to we should replace 6 by 
a scale for the concentration boundary-layer thickness, S,. In  the absence of osmosis 
and in the steady state this is given by a balance between the advection term vC, of 
(3.2) and the diffusion term DC,,. Now for all solutes of interest D is much smaller 
than v (so r 9 1)  with the consequence that the concentration boundary layer is 
much thinner than the viscous, and is confined to the inner part of i t  where 

v K a w y 2  

(when J = 0). The balance between advection and diffusion then gives 

6, = u - q v / x ) * ,  (3.9) 

so that a dimensionless parameter more appropriate than p,. may, in the case where 
osmosis is sufficiently weak, be 

/I’ = a--sp,,. (3.10) 

Furthermore, this means that dimensionless y and t variables more appropriate than 
7 and T in solving for the concentration distribution may be 

6 = y/S, = afy and 7‘ = Bt/S: = a-47. (3.11) 

Again, it should be remembered that these will be appropriate only when u % 1 and 
when the osmosis is in some sense weak; however we shall see in 9 4 that the use of 
(3.1 1 )  will be justified for values of /3’ up to at  least 1 0 3 .  

In the steady state, we shall see thiit this regime corresponds to values of osmotic 
flux I; = O(v-3). \\’hen P‘ is much larger, arid hcnce so is J’, the hyer of greatest 
c,c,ncetit~.~Ltiori gradient is no longer atljwent to the \+-all. The osrnosis adverts solution 
of very low concentration awtiy from the wall, while the outer stqnation-point flow 
adverts solution of concentration C, towards the wall. At the location where the 
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FIGURE 4. Plot of uz = f”(0) against V .  Broken line is the linear approximation (4.1). 

normal velocity v is zero (say 7 = therefore, there is a region where the concentra- 
tion gradient is large. The thickness 6, of this region turns out to be O [ d ( v / c c ) ~  V-*] 
while V is still small (u-8 < V < I) ,  and to be O[cr-~(v/a)~] when V is O(1) or larger. 
The values of T~ in the corresponding regimes are O( Va)  when v-8 @ V @ I ,  O( 1) 
when V = O ( l ) a n d O ( V ) w h e n  V >  1. 

I n  $ 4 we describe the eventual steady-state solution: first the flow field is calculated 
for arbitrary values of V ,  and then the concentration field is computed. I n  $ 5  we 
perform a linearized time-dependent analysis to determine how and over what length 
of time the eventual steady state is achieved. 

4. The steady solution 
The $ow jield 

I n  the steady state the right-hand sides of (3.5) are absent, so the dimensionless stream 
function is given by the same equation as in the absence of osmosis f ” (  + f f ”  + 1 - f ’ 2  = 0) 
but with the modified boundary condition (3.6u), where V is a constant. This is 
therefore the problem of stagnation-point flow with blowing or suction, which was 
solved numerically by Schlichting & Bussman (1943); the case of blowing ( V  > 0) is 
the one posed here, whereas the case of suction is more relevant to reverse osmosis. 
The flow parameters of greatest importance for the concentration distribution are 
the value of 7 at whichf = 0 (vo),  the value of u / x  a t  that 7 (a,  = f ’ ( y o ) )  and, especially, 
the shear stress on the wall, proportional to u2 = f “ ( o ) ;  a2 is plotted against V in 
figure 4. 

When V is small, the flow can be represented as a perturbation expansion about the 
V = 0 solution: 

f ( 7 )  = f o ( T )  + v l ( v ) 7  
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FIGUXE 5 .  Structure of the flow field when V & 1 .  Vorticity is confined to a thin layer, of dirnen- 
sioiiless thickness 1, around 7 = v0 = +nV, where the normal velocity w is zero. 

where fo(7) (the Hiemenz function) and its derivatives are tabulated in Rosenhead 
(1963, p. 232) .  The function fi and others like it can be derived by the numerical 
solution of linear ordinary differential equations, and for V 4 1 we obtain 

Higher-order terms have not been computed because the frill nonlinear problem is not 
difficult to solve numerically. 

When V is large (strong blowing) the solution is more interesting (Pretsch 1944; 
Proudman 1960), in that  the blowing advects fluid away from the wall, while the outer 
stagnation-point flow advects i t  towards the wall. This means that viscous effects are 
confined to the neighbourhood of the value of y a t  which the normal velocity vanishes, 
i.e. at which f = 0 (figure 5) .  Supposef(7) = 0 a t  7 = yo; then the inviscid flow outside 
the viscous layer is given by 

x 1.233-0 '575V.  (4.1) 

and by 
( 4 . 2 ~ )  

( 4 . 2 6 )  

where b is a constant (this is the relevant solution of f f "  - f '2 + 1 = 0). The boundary 
condition f ' ( 0 )  = 0 requires that qo = Bnb, and then the condition f (0) = - V shows 
that b = V. The values of a, and a2 in this limit are thus 1 and l / V  respectively. We 
may note that there is continuity off, f '  and f "  a t  7 = yo for the solutions (4.2a, b ) ,  
so the boundary layer there will be a weak one; the viscous solution in the boundary 
layer is given by 

f" = 

where 
7' = 7 - 70. 

The concentration distribution 

The general solution of the steady form of ( 3 . 5 b )  that satisfies the outer boundary 
condition g(c0) = 1 is 

( 4 . 3 )  
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where d is a constant, Then the osmotic flow relation (3.7) and the second of the 
boundary conditions (3.6 b )  give 

I = JOm exp [ - a/o ' f ( s )ds]  d y .  (4.5) 

As in Q 2, the quantity of greatest interest is the ratio of the actual osmotic flux to the 
flux that would be predicted if (1.1) were used with AC = Cb: that is 

aV = g(0) = (1 + aVI)-l. y = - = -  
pcb / u  

From this system of equations we can in principle predict y as a function of j3, (cf. 
equation (2.4)). However, in an experiment the physical properties of the solvent and 
solute would be known, and from a measurement of J we would wish to derive the 
value of P; in dimensionless terms we would know a and V ,  and seek to predict j3,. 
In view of the fact that f (7) depends on V, and hence I depends on cr and V ,  this is 
also the most convenient way to derive the theoretical results: given V and a, deduce 
p, and y .  

Givenf(7) from the flow field solution, it is in principle a simple matter to calculate 
I numerically from (4.5). However, since u is always very large in practice it is both 
easier and more illuminating to perform an asymptotic analysis of the integral. 
Standard methods show that the dominant contribution to the integral in (4.5) (and 
in (4.3)) comes from the neighbourhood of 7 = rlO, wheref(y,) = 0, as predicted in Q 3. 
If V is not very small, so that yo is not too close to zero, we find that 

where 

(4.7) 

Fo = f " f ( y ) d ~  and Z = 7, (T) aa, 4 . 
0 

The dimensionless thickness of the layer of high concentration gradient around 
9 = q0 can be seen to be O(u-*), as long as a, = O(1). When V 9 I ,  so that r0 NN *nV,  
a, x 1, a2 x l / V  and F, z - V 2 ,  equation (4.7) yields 

with the consequence that y ,  from (4.6), is very small and j3, (4.4) is enormous. Such 
values are unlikely to be realistic. 

When V < 1, ?lo is small and f can therefore be expanded in powers of 9: 

f ( 7 )  - V + 3 + 0 ( 1 1 3 ) ,  (4.9) 

where a2 x 1.233 from (4.1).  Thus we have 

?lo FZ (2V/a,)4, a, z (2Va2)4 and Fo NN - $ V* 
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so that (4.7) becomes 

This expansion clearly breaks down when V = O(o-%), which is also the value a t  
which the exponential in (4.10) becomes O(1) and the error function ceases to be 
approximately equal to 1. At this value, too, I = O(a-f) and CTVI = 0(1), so that y 
is now O(1); p, = O ( d )  is still large. 

A new expansion procedure is thus required when V = O(u-8). A resealing of the 
variables on the lines envisaged in $ 3  makes the procedure less cumbersome. We 
introduce (cf. (3.10)) 

p’ = v-”p,, V‘ = aw,  I’ = a q  (4.11) 

which are all expected to be O( i ) ,  and from (4.4) and (4.6) we obtain 

p‘ = V‘(1 +I’V‘),  y = (1  +I’V’)-1. (4.12) 

The integral (4.5) can again be approximated using (4.9) for f(s), and since so is SO 

small, of O(a-f), it  becomes simpler to expand about y = 0 instead of 7 = yo. Intro- 
ducing y = a f y  (cf. (3.11)) the integral becomes 

which can be denoted bv 

I’ z n (b)’ Hi [ V’( 2/a,)f] (4.13) 

(Abramowitz & Stegun 1964, p. 448). Hi(x) can be represented as an integral of Airy 
functions and it is readily shown that 

(4.14) 

Thus, as V‘ -+ co, 

(4.16) 

which is the same as (4.10) with erf[ ] = 1. The whole range of V is now covered: 
(4.13) must be used for V = O(a-*)(F” = O(l) ) ,  while (4.16) should be used for 
(T-) 6 V < 1, and the full expression (4.7) is needed for V = O(l) ,  reducing to (4.8) 
when V $  1 .  

The above analysis shows that it is only when V is as small as O ( d )  that the 
scaling appropriate to a concentration boundary layer in the absence of osmosis, 
with thickness 8, given by (3.9),  is appropriate. For larger V the layer has dimension- 
less thickness O(a-$) (or O(o-*V-&) when V < 1) and is centred on 7 = yo. 

The results of this analysis are presented in the form of a graph of y against p’ 
(log scale) in figure 6. Values of V’ are also shown on the abscissa; it  can be seen that 
V‘ is only 3 for a value of p’ in excess of 1000, corresponding to a value of y of about 
0-005. Over this range of parameters, then, it is evident that V‘ is not large, and (4.13) 
was used to  plot the solid curve on figure 6. The broken curves on figure 6 are the 
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0‘ 
FIGURE 6. Graph ofyagainstp’, as computed from (4.12) and (4.13); values of V’arealso marked 
on the abscissa. The broken curves are those obtained by using (4.14) to evaluate (4.13) at  small 
values of L”, and by using (4.15) at  large V’. The dash-dot curve and the dotted curve represent 
the asymptotic expansion (4.17),  and its leading term, respectively. 

approximate results for small and large V’, obtained by using (4.1 4) and (4.15) respec- 
tively as approximations to the function Hi(z). It can be seen that together they give 
an extremely good overall approximation, and there would be little loss of accuracy 
if the small V’ approximation were used for V’ < 1 (P’ 5 5.3) and the large V’ approxi- 
mation for V’ > 1. Since the result for large V’ is the same as that for small V ,  (4.10) 
with erf [ ] = 1 ,  the only possible source of inaccuracy in the solid curve of figure 6 
is the fact that a2 is not identically equal to 1.233. The results were recalculated with 
a2 given by (4.1) and with V evaluated from V’ on the assumption that r~ = lo3 (this 
is a realistic value; see S 6) ;  figure 6 was not perceptibly changed. 

Finally, we may note that the large V’ expansion of I’ in (4.16) can be inverted and 
used with (4.12) to give an asymptotic expansion for y as a function of /I‘ when /3’ is 
large (butnotsolargethat (4,lO)isinvalid). Whena,isputequalto 1.233 thisexpansion 
is 

1 . 1  15 (10gp’)Q ( 1 
1 -- (2-128+3loglOgp’)+o 

P‘ 1% P Y =  

This expression is also plotted on figure 6 (the dash--dot curve), where it is seen to be 
considerably less useful for moderate V‘ than that obtained from the full large-V’ 
expression (4.16).  The leading term of (4.17) is plotted as a dotted curve; the curve 
representing the full solution passes between these two asymptotic representations. 

5. The time-dependent problem 
It is to be expected that the steady-state solution of the previous section will 

eventually be realized whatever the initial conditions, a t  least assuming that the 
stirring remains steady. The main question of experimental interest concerns the 
length of time required to establish the steady state. Suppose that the stirring is 
turned on and then, at time t = 0,  solute is introduced into the stirred chamber so 



T h e  interaction between stirring and osmosis. Part 1 855 

that  C = C, a t  some finite distance from the membrane. The development of the 
steady-state concentration distribution will then take place over two or three time 
scales. There will first be a rapid adjustment as solute is advected to the wall by the 
stirring motion; the relevant, convective time scale is a-l. Then osmotic flow will 
begin and there may be a further convective period, as the diffusion layer around 
7 = yo is set up, followed by a more gradual, diffusive settling down to the steady state. 
The time scales for these two stages are a-ly0/ V for the first ( = O(cr-l) when V 2 O( 1); 
= O(a-‘V-$) when V 4 1) and 8,2/D, where 8, is the concentration layer thickness, 
for the second. In  the most relevant case, in which V = O(a-3) and 8,is given by (3.9), 
these two time scales merge into one, of O(a-la+). What multiple of the diffusive 
time scale must be allowed before the steady state may be assumed can be de- 
duced from a linearized theory in which the dependent variables are represented as 
small perturbations about their steady-state values. 

The time-dependent problem is defined by equations ( 3 . 5 )  to (3 .7)  (plus an initial 
condition). If we represent the steady-state solutions of 3 4 by the suffix zero, we can 
write 

f ( r ,  7) = fo(r) +f,(r, 71, 

q(r, 7) = g , ( r )  +g1(r, 7h 

V ( 7 )  = & + K ;  
substituting into the equations and linearizing, we obtain a homogeneous linear 
problem. This suggests that the solution may be represented as the sum of an infinite 
number of exponentially decaying terms of the form 

fi(7,7) = qF(7)e - - k7 ,  g1(7,7) = K G ( T ) ~ - ~ ‘ ,  V, = ge--k7, 

where is an arbitrary constant whose value will depend on the initial conditions 
but has no effect on the determination of k .  We therefore assume such a form, and 
derive the following set of equations and boundary conditions (where a prime denotes 

(5.1) 

d l d 7 ) :  
F” +fa F” - 2f,’F’ + f:F = - kF’, 

F ( a )  = F’(0) = 0, F ( 0 )  = - 1 ;  

I 1 
- G” + foG’ + g; F = - kG, 
CT 

G ( a )  = 0, 2c~&G(0)  = G’(O), G(0) = 
( 5 . 2 )  

in the derivation of this the relation a& = /3,go(0), from (3 .7) ,  has been used. The 
problem defined by (5 .1)  and (5 .2)  is clearly an eigenvslue problem for k ;  the final 
approach to the steady state will take place a t  a rate defined by the eigenvalue with 
smallest real part. \Ve accordingly concentrate on evaluating this eigenvalue, for 
various values of CT and of p,.. 

The first thing to notice is that  the problem for G influences the problem for F only 
through the term involving k in (5 .1) .  Thus, as long as k is not very large, the length 
scale for variations of F mill be the same as the length scale for variations of fa. This 
means that 7 is the appropriate variable for F ;  in particular, we will have 

(5.3) 

as r --f 0, where a2 is a constant, depending on k ,  which remains O( 1) as long as k is 
not large. 

F ( y )  = - 1 + $a,@) 7 2  
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FIGURE 7 .  Graphs of the real and imaginary parts of the eigenvalue k' with smallest real part, 

against /3', computed from (5.4); values of V' are also marked on the abscissa. 

Now we turn to  the problem for G(7). As in the previous section we assume that a 
is large, and in view of those results (figure 6) we further restrict attention to O( 1) 
values of V' = a36. This means that the dimensionless length scale for concentration 
variations is a-f, so that the independent variable should be 6 as defined in (3.11); 
this has the further implication that the appropriate time variable is 7' rather than 7 .  

We therefore introduce the corresponding inverse time constant k', where 

k = a-)k'; 

hence k is expected to be small and (5.3) to be valid. Indeed, with this scaling, (5.3) 
gives 

SO that the dependence of F on k has no effect on the determination of G. 

duces to the following: 

F(7)  z - 1 + $a-3a2<2 23 - 1, 

If we make one further substitution, writing G(5)  = (a#/,8') H ( [ ) ,  the problem re- 

Hc5 + ( - V' + &z62) Hs + k'H = V' ,  exp ( V ' y -  

H ( w )  = 0, H(O) = I ,  H5(0) = 2V' .  (5.4) 

The objective is to calculate the eigenvalue k' with lowest real part for a range of 
values of V ' ,  which should a t  least include 0 < V' < 3 in order that all the p' values 
of figure 6 may be covered. 

The problem defined by (5.4) is not amenable to analytical solution. When V' = 0 
it is a simple matter to prove that k' is real, but even in that case there is no obvious 
solution for H ;  in general it is not possible to prove that k' is real. The problem has 
therefore been solved numerically for V' < 3, by means of Runge-Kutta integration 
of the real and imaginary parts of the equation and a modified Newton-Raphson 
method for locating the relevant eigenvalue lc'. When V' is less than the critical value 
VL z 1.12 then k' is real, but when V' exceeds this value lc' becomes complex (the 
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second eigenvalue remains real until a higher critical value of V‘ is reached). A similar 
phenomenon was reported by Pedley & Fischbarg ( 1  980) for the standard unstirred 
layer model; what it means is that  the final approach to the steady state takes the 
form of a damped oscillation when V’ > VA. The real and imaginary parts of k’ are 
plotted against /3‘ (log scale) in figure 7; the critical value of /3’, corresponding to 
V‘ = VL, is /3: z 7.4. It can be seen that, for values of /3’ in the range 0 to 1000, the real 
part of k’ lies between about 1 and about 5 .  Thus for all p’ in this range the time scale 
for decay of the perturbations i s  O(uf/a), the time scale for diffusion across the con- 
centration boundary layer (cf. equation (3.1 1 ) ) .  For the record, the numerical results 
yield the following expansion of k’ when V’ is small: 

k‘ M 0*90+ 1.32V’+0*28Vf2. ( 5 . 5 )  

6.  Discussion 
Application of the above theory depends on the order of magnitude of the dimension- 

less parameters /3, and u in an experiment. Let us consider experiments in which the so- 
lute is sucrose and the solvent water. Then D % 5 x 10-6 om2 s-1 while v 2: 1 x cm2 
s-l so that u z 2 x lo3. Concentrations used in experiments in witro vary widely ; a 
value close to the top end of the commonly used range is 300 mmol per litre, or 
C, = 3 x mol ~ m - ~ .  Values of the (inferred) osmotic permeability P also vary 
widely according to the membrane under study; from House (1974) values of between 
2.0 x and 6.1 x 10-1 ern s-l (mol ~ m - ~ ) - l  can be inferred for cell membranes, while 
a value of 4.4 cm s-l ( m o l ~ m - ~ ) - l  has been measured for rat kidney proximal tubule 
(an epithelium). The value may perhaps be made higher still by the careful manu- 
facture of an artificial membrane, although in that case, as in the case of the proximal 
tubule, the membrane is so permeable that sucrose can leak back across it,  cutting 
down the effective value of P. 

Finally we must ascribe a value to the stirring parameter a. To do this, imagine a 
chamber stirred by two counter-rotating cylinders (or paddles), as depicted in figure 
2 (a) .  Assuming that the cylinders are not very close to the membrane, the flow near 
the stagnation point (but outside the viscous boundary layer) can be estimated from 
the irrotational motion due to two line vortices, located a t  the centres of the cylinders, 
in the presence of a plane boundary; their strength would be such as to give approxi- 
mately the correct tangential velocity on the cylinder boundaries. If the cylinder 
radii are a ,  if their centres are distance 2b apart and distance d from the plane, and if 
they rotate with angular velocity !2, then it is readily shown that 

8a2bdQ 
(b2 + d2)2  ’ 

a =  

This will be approximately valid as long as a/b,  a/d and the inverse Reynolds number 
v/Rad are reasonably small. If we take a = 0.2 em, b = 0.5 cm, d = 1.0 cm and 
LR = 2nf s-1, then a = 0.64f s-1, so for arotation rate of I0 cycles per second a = 6.4 s-l, 
while for 1 cycle per second a = 0.64 s-l. 

Thus the value of p,. (equation (3.8)) is expected to range from 0.05 and below up 
to about 33. It follows that /3’ (equation (4.11)) is unlikely in biological experiments 
to rise above about 2.6, which is less than BE, so that the approach to the steady state 
is in general likely to be monotonic. However with /3‘ = 2.6, the predicted value of 
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is about 0.29 (figure 6), which means that a t  values such as this the value of osmotic 
permeability inferred from ( 1 . 1 )  with C = C, is likely to be only 29 % of the true value. 

In view of the rather limited magnitude of p’ in practice, and since the small V’ or 
j3‘ approximation is accurate for V‘ 5 1, (p‘ 5 5.3) from figure 6, it may be useful to 
set down the first few terms of the small V’ expansion for y (we give the expansion in 
powers of V‘ rather than p’ because V‘ = P’y is the measurable quantity in practice). 
Using equations (4.12) to (4.14) we obtain 

z 1-  1*513V”+0*992V‘2; (6.1) 

this is expected to be adequate for most practical applications. 
We began this paper by asking whether an ‘equivalent unstirred layer thickness’ 

6 could be defined for an experiment in which the outward advection of solute by the 
osmotic flux is limited by the inward advection of the stirring rather than by back 
diffusion. A scale for the boundary-layer thickness, S,, has been shown to be a-*(v/a)* 
(from (3.9))) but in view of the different mechanism a t  work and the different shape 
of the concentration profile (figure 1 )  it seems unlikely that merely putting 8, into 
the definition of j3 (equation (2.6)) will allow y to be predicted accurately by (2.4). 
However, the shape of the graph in figure 6 is very similar to that of the curve of y 
against p obtained from (2.4) (Pedley & Fischbarg 1978, figure 4), and it turns out 
that a simple rescaling causes the two curves very nearly to coincide. If we take 
p = bp“, with b chosen so that the value of p’ when y = 0.5 from figure 6 is the same 
as the value of p” when y = 0.5 from (2.4) (that is, b = 1-59), then it can be seen from 
table 1 how close the coincidence is for j3’ < lo2. This is equivalent to the statement 
that if we define an unstirred layer thickness 

then equation (2.4) can be used with acceptable accuracy to predict the effect of the 
layer on osmotic flow. This means that physiologists may continue to use their familiar 
formula, but without having to postulate a rather arbitrary value for 6, a t  least as 
long as the stirring is of the form proposed here. This may prove to be the most 
significant result of the present work. We may note that a similar result may be ob- 
tainable for the other types of stirring depicted in figure 2; the corresponding theory 
for some of these cases is in progress. 

p’ or p” y,  present theory y, from (2.7) 

0.01 
0-05 
0.1 
0.5 
1 so 
5.0 
10.0 
50.0 
100.0 
500.0 

0.988 
0.935 
0.874 
0.613 
0.472 
0.198 
0.125 
0.038 
0.019 
0.008 

0.984 
0.929 
0.871 
0.614 
0.472 
0.201 
0.129 
0.040 
0.024 
0.006 

TABLE 1. Comparison of the values of y predicted for various values of p’ from 
figure 6, and those predicted for the same values of p” ( = p/1.59) from (2.7). 
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s.p.m. c, = Chr 

I A  

FIGURE 8. Sketch of the concentration distributions on the two sides of a semi-permeable mem- 
brane when the bulk concentration is non-zero on both sides. Note that solute is piled up against 
the membrane on the left, but swept away from it  on the right. 

This paper has examined the interaction of osmosis and stagnation-point stirring 
in one particular case, in which the membrane is a pure semi-permeable membrane 
(i.e. is impermeable to solute) and in which the solute concentration on one side of 
the membrane is identically zero. In  a real experiment neither of these is likely to be 
the case. In  order to generalize the theory one would need (a)  to modify the boundary 
conditions ( 3 . 3 )  and ( 3 . 4 ) ,  and ( b )  to consider another concentration boundary layer 
on the other side of the membrane. As far as (a)  is concerned, there exist phenomeno- 
logical equations relating the flux of water and salt across a leaky membrane to the 
concentration difference across it (House 1974).  However, use of these requires know- 
ledge of the solute permeability of the membrane as well as of two further dimension- 
less constants known as reflexion coefficients. These are usually taken to be equal to 
each other, but Hill (1979)  has pointed out that there is no physical reason why they 
should be equal, with the consequence that we do not know the value of both and 
cannot apply realistic boundary conditions. There is therefore no point in constructing 
an elaborate theory for the case of a leaky membrane. 

Nevertheless, most experiments with biological membranes will have non-zero 
solute concentrations on both sides, so in addition to sweeping away solute on the 
side towards which it is directed, the osmotic flow will cause solute to pile up on the 
other side. This will further cut down the concentration difference across the mem- 
brane, and means that the above estimate of y is conservative. However, in the case 
of piling up, the concentration boundary layer will tend to be thinner than in the 
sweeping-away case, because both the stirring and the osmotic flow advect solute 
towards the membrane, so its effect will be smaller. The effect can be analysed in a 
manner similar to the above: let C,,, C,, be the bulk solutions on the two sides of the 
membrane (figure 8) with C,, > c b ,  so that osmotic flow is to the right. Let the steady- 
state concentrations be c, = cblgl(7l) and C, = C,, g2(y2), where 7, = - 7, = (a/v)+ y, 
and it is assumed that the stirring parameter a is the same on the two sides of the 
membrane. The dimensionless boundary conditions corresponding to the second of 
( 3 . 6 b )  are then 

r V g , ( O )  = gi(0) and rVgz(0)  = -g#), 
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while the osmosis condition (3.7) becomes 

V V  = Pv[~,sl(0)-(01- l)S2(0)li 

where p, is defined as in (3.8) with C,, - C,, for C,, and where 

The case solved in $4 is that  with 8, = 1 .  The solutions for g, and g, are both of the 
form (4.3),  and it, can readily be shown that the ratio y of actual water flux to predicted 
flux is 

0,- 1 -- 
= 1+f7VI1  l--(TV12' 

where Il and I, are defined as in (4.5).  

functions f l (y l )  and fi(r2) are approximately given by 
We now restrict attention to the case where V' = a%V = O ( l ) ,  so that the flow 

with the same value of u2 in each case. We can again rescale the quantities 11, I, and pu 
as in (4.11), and we obtain P'y = V' (as before) and (6.4) becomes 

where I ;  is given by (4.13), and I; is the same but with - V' for V'.  Given el, (6.5) 
can be used in place of (4.12) to  compute y .  The expansion for small V ' ,  already seen 
to be most useful in practice, is in this case 

y % 1- 1*513(28,- 1) V'+0.992V'2, (6.6) 

which should be compared with (6.1). These results show that the effect of a second 
concentration boundary layer on the other side of the membrane may be quite large 
if 8, is large, i.e. if the concentration difference during the osmotic flow is superimposed 
on an already large concentration on each side. Furthermore, rearrangement of (6.5) 
shows that for all 0, > 1 there is an upper bound on the observable osmotic flow in 
this case, i.e. on V ' ,  since y > 0 and hence 

(6 .7)  

We know from (4.8) that  I ; - + c ~ a s  V'+ 00, so if 8, > 1 then V' is bounded as p' in- 
creases. A similar bound arises in the standard model ( §  2) where the equivalent of 
(6.7) is 

1 - V"8, I:, + (8, - 1) I;] > 0. 

y = 8,e-by- (0,- 1)eflY > 0. (6.8) 
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Rote added in proof (3  November 1980). 

After this paper went to  press I was made aware of the paper ‘Ultrafiltration of 
proteins in stagnation flow’ by A.  A. Kozinski & E. N. Lightfoot (A.I.Ch.E.J. 17, 

1981, 1971) in which ultrafiltration (similar to  reverse osmosis) in the presence of 
stagnation point flow was examined numerically. The problem of this paper was 
not considered, however. 




