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When pure solvent is separated from a solution of non-zero concentration C, by a
semi-permeable membrane, permeable to solvent (water) but not to solute, water
flows osmotically across the membrane towards the solution. Its velocity J is given
by J = PAC, where P is a constant and AC is the concentration difference across the
membrane. Because the osmotic flow advects solute away from the membrane, AC is
usually less than C,, by a factor v which depends on the thickness of and flow in a
concentration boundary layer. In this paper the layer is analysed on the assumption
that the stirring motions in the bulk solution, which counter the osmotic advection,
can be represented as two-dimensional stagnation-point flow. The steady-state results
are compared with those of the standard physiological model in which the layer has a
given thickness ¢ and the osmotic advection is countered only by diffusion. It turns
out that the standard theory, although mechanistically inadequate, accurately pre-
dicts the value of y over a wide range of values of the governing parameter § = PC,é/D
{(where D is the solute diffusivity) if § is given by

-

where v is the kinematic viscosity of the fluid and « is the stirring parameter. The final
approach to the steady state is also analysed, and it is shown to be achieved in a time
scale (D/v)}/ak’ where k’ is a dimensionless number whose dependence on f is com-
puted. Moreover, if 8 exceeds a certain critical value (=~ 10), the approach to the
steady state is not monotonic but takes the form of a damped oscillation (in practice,
however, £ is unlikely to rise significantly above 1). The theory is extended to the case
where the solute concentration is non-zero on both sides of the membrane and in that
case it is shown that J is bounded as g - co.

1. Introduction

All biological membranes, and many synthetic ones, are to some extent semi-
permeable; that is, they let through water and other small molecular species, but are
impermeable to all solutes whose molecules exceed a certain size. Thus, when two
solutions of such larger molecules are separated by a semi-permeable membrane,
with a greater concentration of solute on one side than on the other, the fact that the
chemical potentials on the two sides will tend to equilibrium causes water to flow
across the membrane towards the side with greater solute concentration. This is the
phenomenon of osmosis; it still occurs to a certain extent when the solute molecules
can cross the membrane but experience more resistance in doing so than the water
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F1cure 1. Sketch of the ‘ unstirred layer’ separating pure water from a solution in which the
solute concentration C far from the semi-permeable membrane (s.p.m.) is C,. The osmotic water
flow advects solute away from the membrane, thereby reducing the concentration at the membrane
to a value C(0) less than C,; hence the osmotic flux, given by (1.1) with AC = C(0) not C,, is less
than might have been predicted. The standard model treats the unstirred layer as a region of given
thickness d in which the osmotic advection is balanced only by back diffusion; the concentration
distribution in the layer would then resemble the dash—dot curve rather than the anticipated solid
curve.

molecules. Osmosis occurs not only across the membranes of all living cells but also
into and out of organs in the body, such as kidney tubules, blood capillaries, the
intestines, etc., whose walls are made up of one or more layers of cells (epithelia);
in those cases the pathways followed by water or solute molecules may be rather
complicated, involving passage either through or between the cells. Moreover osmosis
is often associated with electrokinetic phenomena and with active transport, both
important areas of modern biological research.

In order to be able to interpret experiments on these processes one needs to know
the ‘osmotic permeability’ of the membranes concerned. If AC is the difference in
osmolarity (effectively concentration) across a semi-permeable membrane and if J is
the water flux per unit area (i.e. the average velocity) through it, then

J = PAC, (1.1)

where P is called the osmotic permeability of the membrane (equation (1.1) is based
on the assumption that there are no other driving forces for water flux, such as a
difference in hydrostatic pressure or in electrostatic potential). According to the
standard equations of irreversible thermodynamics (see for example House 1974), P
is a constant for an isothermal system, independent of the nature or the concentration
of the impermeant solute. For such a membrane one might imagine that it would be
quite straightforward to record the solute concentrations in the solutions on the two
sides of the membrane, to measure J, and to use (1.1) to infer P.

However, consider an experiment in which a plane semi-permeable membrane
separates two chambers, one containing pure water (solute concentration ' = 0) and
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one containing a solution of a non-electrolyte (e.g. sucrose) at concentration C = C,.
Then the osmotic flow will itself advect solute away from the membrane, and although
this effect will be opposed, by diffusion and by stirring motions in the bulk solution,
there will be a reduction in econcentration at the membrane itself, a reduction in low
and hence an underestimate of P (figure 1). It is important to be able to predict the
extent of this reduction.

The region in which €' is reduced below C, is referred to in the physiological literature
as an ‘unstirred layer’. The bulk solution in most experiments is stirred in some way,
but near the membrane the stirring motion is inevitably parallel to it and is ineffective
at mixing the solution. The standard physiological model (first expounded clearly by
Dainty 1963) is of a layer of given thickness &, which may be known from experiments
in which the concentration distribution is measured directly (see Lerche 1976 for
example). Then the effect of the layer is analysed on the assumptions that the only
motion in the layer is the osmotic flux itself and that the solute concentration C' in the
layer depends only on the distance y from the membrane and on the time (see figure 1).
This model is briefly outlined in §2, but it gives no insight into how & is actually
determined ; the model will be applicable only when there is known to be an unstirrable
layer next to the membrane; for example the layer of porous tissue on which many
epithelia are mounted (Pedley & Fischbarg 1980). In other circumstances the stirring
motions will interact with the osmotic flow in the formation of the layer, a concentra-
tion boundary layer. The main purpose of the present paper is to investigate this
interaction. In particular we shall ask whether an effective boundary (or unstirred)
layer thickness & can be defined, and whether a formula similar to that derived from
the standard model (equation (2.4) below) can be used to assess the effect of the layer
on the osmotic flow.

It is clear that the thickness and effect of the concentration boundary layer will be
determined by both the strength and the nature of the stirring motions; indeed, this
was explicitly recognized by Dainty (1963) before he developed the simple model of
§2. In this paper we choose to represent the stirring motion as a simple stagnation-
point flow against the infinite plane y = 0 occupied by the semi-permeable membrane.
Such a model would be directly applicable in an experiment where the stirring was
generated by two counter-rotating stirrers (figure 2a). Other types of flow could also
be considered (and will be in subsequent papers). One possibility is that the membrane
forms part of a solid wall past which the flow (in the absence of osmosis) is unidirec-
tional, as in a tube or in a circular container with a concentric stirrer (figures 25, c).
Another possibility is that the stirring motion contains random fluctuations (figure
2d). Yet another is that the membrane is vertical and the buoyancy force associated
with the lower solute concentration in the boundary layer drives a natural convection
flow (figure 2¢; cf. Everitt & Haydon 1969). However, the present model allows for a
relatively simple complete solution to both the steady-state and the unsteady prob-
lems, and is expected to give results which are qualitatively similar to those of at
least some of the other problems.

Theories similar to some of those proposed above have previously been performed
in investigations into the desalination of sea-water by the ‘reverse osmosis’ method.
In this method, sea-water is pumped through channels or tubes with semi-permeable
walls; the pressure in the sea-water is greater than that in the fresh water outside by
an amount that is sufficient to overcome the osmotic pressure difference between the
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Froure 2. Sketches of various ways in which the bulk solution may be stirred so as to determine
the concentration boundary layer (c.b.l.) next to the semi-permeable membrane (s.p.m.). (a}
Stagnation-point flow, treated in this paper; (b) pipe or channel flow; (c) a single concentric stirrer;
(d) random motions (turbulence); (e) natural convection driven by the relative buoyancy of the
solute-poor fluid near the membrane.

two fluids, so an outward water flux takes place. Unfortunately, however, solute
builds up in the concentration boundary layer (‘ concentration polarization’), increas-
ing the concentration difference across the membrane, and inhibiting the waterflow.
Such systems have been analysed by (among others) Hendricks & Williams (1971),
Derzansky & Gill (1974) and Johnson & Acrivos (1969). However, these authors all
considered the case of flow fowards the membrane, causing a build-up of solute; the
nonlinear nature of the fluid-mechanical problem means that the results are not
directly applicable to the present case in which solute is swept away from the mem-
brane by the osmosis. Furthermore, no one as far as I know has considered the case
of stagnation-point flow, in which many details can be derived analytically.

2. The standard ‘unstirred layer’ model

According to this model, the solute concentration C(y,t) in the unstirred layer
(0 < y < 0) satisfies the one-dimensional convection-diffusion equation, together with
the boundary conditions that the membrane is impermeable to solute and that
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F1oure 3. Solution of the initial-value problem defined by (2.1) to (2.3) with C(y,0) = 0, in the
case where f# = 100. C(z,t)/C, is plotted against Dt/8? for two values of 2/4. Note how the con-

centration overshoots its final steady-state value. (I am grateful to Dr D. L. S. McElwain for
computing these results.)

C(8,t) = Cy; J is given by (1.1) with AC = C(0,t). There should also be an initial
condition such as C(y, 0) = 0(0 < y < §), which would apply if the concentration at
y = & were suddenly raised to the value C, at time ¢ = 0.

After an initial adjustment, the concentration distribution, and hence J, settles
down to a steady state, in which

C = Csly) = Cyexp[(Js/D) (y—9)], (2.1)
where D is the solute diffusivity, while (1.1) gives the steady water flux Jg:
Jg = PCyexp (—Jgé/D). (2.2)

This is the solution that was given by Dainty (1963). Pedley & Fischbarg (1978)
expressed it in dimensionless form, writing

B = PC,6/D, vy =Jg/PCy= Cg0)/C,, (2.3)
s0 that (2.2) became
vy = e F7, (2.4)

Here f is a parameter which is known when the system is known, while y represents
the derived osmotic flux; vy is equal to the ratio of the actual osmotic flux to the flux
which would be expected if (1.1) were used with AC = C,,. In an experiment one would
measure J and infer P; in terms of the dimensionless parameters this is equivalent to
meastring the product fy and using (2.4) to infer ¥ (and hence £).

The steady concentration distribution in the layer has commonly been supposed to
resemble the solid curve in figure 1 (see Dainty 1963, for example). However, the
distribution (2.1) predicted by this model actually resembles the dash-dot curve in
figure 1, with steepest concentration gradient at the outer edge of the layer not the
wall. The present model does give a distribution resembling the solid curve.

The unsteady, initial-value problem has been solved numerically by Schafer, Patlak
& Andreoli (1974); the time scale ¢ for the decay of perturbations to the steady state
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(océ?/D) was obtained analytically by Pedley & Fischbarg (1978), who made the
interesting prediction that if /4 is large enough (greater than about 27) the approach
to the steady state is not monotonic but involves an overshoot. This was not revealed
by Schafer et al. (1974), but some more recent computations by Dr D. L. S. McElwain
have confirmed it (figure 3). As Pedley & Fischbarg (1978) point out, the values of £
appropriate to cell membranes are likely to be rather small ( < 0-1, say) so that the
oscillatory behaviour is unlikely to be observed and y would not fall below about 0-9,
indicating an error of no more than 10 %, in estimating P. However, if the membrane
is a (leaky) epithelium and sucrose the solute, £ can rise as high as 7-5 (y = 0-21),
and in carefully controlled laboratory conditions it may be possible to raise it still
higher.

3. Formulation and non-dimensionalization

The membrane is again taken to occupy the (infinite) plane y = 0. In the absence
of osmosis the motion is taken to be two-dimensional stagnation-point flow so that
far from the plane the velocity field is given by

U~AX, vV~ —AY as Yy -—> o, {3.1)

where x is measured along the plane, (u, v) are the velocity components in the (z,y)
directions respectively, and a is a constant (the stirring parameter). The velocity field
satisfies the unsteady two-dimensional Navier-Stokes equations for an incompressible
viscous fluid, and the concentration C(z, y, t) of solute satisfies

Cy+uC, +vC, = D(C,, +C,

1/11)'

(3.2)
The boundary conditions on %, v at the wall are
u=0, v=Jxt) at y=0,
where J(z, t) is once more the osmotic flux per unit area, given in terms of C(z, 0,¢) by
J(z,t) = PC(z, 0,1). (3.3)
The boundary conditions on C are now
C—~C, as y—>owo and JC-DC =0 at y=0; (3.4)

the second of these represents the impermeability of the wall to solute. An initial con-
dition is also required for a fully posed initial-value problem.

The advantage of choosing stagnation-point flow is that the solution for v in the
absence of osmosis is independent of «, so it is possible for the normal velocity at the
wall, J, also to be independent of x without affecting the x dependence of » and v;
C too can now be independent of z. We accordingly eliminate x and non-dimensionalize
the variables as follows:

w=azf'(y,7), v=—(if(n1), C=Ch(,7),
7= (a/v)ty, 7=uo,
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where v is the kinematic viscosity of the fluid and a prime denotes differentiation with
respect to 7. The problem is then transformed into the following pair of differential
equations,
frHffr ==, (3.50)
g"+ofg = oy, (3.5b)
where o = v/D is the Schmidt number of the fluid; the boundary conditions are
[0, 7y =1, f(0,7)=0, f(0,7)= —V(r), (3.6a)
g(o,7) =1, o¥V(r)g(0,7) =¢g'(0,7), (3.6b)
where
V(r) = (aw) 4 J(1).

The final relation stems from (3.3), which becomes

oV(r) = B,9(0,7) (3.7)
where )
B = P—gf (2) . (3.8)

We may note that (v/x)? is the length-scale for the viscous boundary-layer thickness
in standard stagnation-point flow, so g, is similar to # (equation 2.3) but with this
scale in place of 6. To achieve a quantity truly analogous to # we should replace 8 by
a scale for the concentration boundary-layer thickness, d,. In the absence of osmosis
and in the steady state this is given by a balance between the advection term »Cj, of
(3.2) and the diffusion term DC,,. Now for all solutes of interest D is much smaller
than v (so ¢ > 1) with the consequence that the concentration boundary layer is
much thinner than the viscous, and is confined to the inner part of it where

v oc atv—ty2
(when J = 0). The balance between advection and diffusion then gives
8, = o-d(v/a)t, (3.9)

so that a dimensionless parameter more appropriate than £, may, in the case where

osmosis is sufficiently weak, be
B =034, (3.10)

Furthermore, this means that dimensionless y and ¢ variables more appropriate than
7 and 7 in solving for the concentration distribution may be

{=y/d,=0dy and 1 = Dt/8?=oc"}r. (3.11)

Again, it should be remembered that these will be appropriate only when o > 1 and
when the osmosis is in some sense weak; however we shall see in §4 that the use of
(3.11) will be justified for values of 8’ up to at least 103.

In the steady state, we shall see that this regime corresponds to values of osmotic
flux ¥ = O(o=%). When £’ is much larger, and hence so is V, the layer of greatest
concentration gradient is no longer adjacent to the wall. The osmosis advects solution
of very low concentration awav from the wall, while the outer stagnation-point flow
advects solution of concentration C, towards the wall. At the location where the
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Ficure 4. Plot of a, = f”(0) against V. Broken line is the linear approximation (4.1).

normal velocity v is zero (say 9 = 7,), therefore, there is a region where the concentra-
tion gradient is large. The thickness 8, of this region turns out to be O[o—%(v /o)t V-]
while V is still small (0% < V < 1), and to be O[c—}(v/a)}] when V is O(1) or larger.
The values of 7, in the corresponding regimes are O(V?#) when o~% < V < 1, O(1)
when V = O(1) and O(V) when V » 1.

In § 4 we describe the eventual steady-state solution: first the flow field is calculated
for arbitrary values of V, and then the concentration field is computed. In §5 we
perform a linearized time-dependent analysis to determine how and over what length
of time the eventual steady state is achieved.

4. The steady solution
The flow field

In the steady state the right-hand sides of (3.5) are absent, so the dimensionless stream
functionisgiven by the same equationasin theabsence ofosmosis f”(+ff”+1—f'% = 0)
but with the modified boundary condition (3.6a), where V is a constant. This is
therefore the problem of stagnation-point flow with blowing or suction, which was
solved numerically by Schlichting & Bussman (1943); the case of blowing (V > 0) is
the one posed here, whereas the case of suction is more relevant to reverse osmosis.
The flow parameters of greatest importance for the concentration distribution are
the value of 9 at which f = 0 (7,), the value of u/x at that y (a; = f'(7,)) and, especially,
the shear stress on the wall, proportional to a, = f”(0); a, is plotted against V in
figure 4.

When V is small, the flow can be represented as a perturbation expansion about the
V = 0 solution:

f) = fom) + Vi),
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Ficuke 5. Structure of the flow field when V > 1. Vorticity is confined to a thin layer, of dimen.-
sionless thickness 1, around 5 = 7, = 4wV, where the normal velocity v is zero.

where f(7) (the Hiemenz function) and its derivatives are tabulated in Rosenhead
(1963, p. 232). The function f;, and others like it can be derived by the numerical
solution of linear ordinary differential equations, and for ¥ < 1 we obtain

a, = 1-233-0-5757V. (4.1)
Higher-order terms have not been computed because the full nonlinear problem is not
difficult to solve numerically.

When V is large (strong blowing) the solution is more interesting (Pretsch 1944;
Proudman 1960), in that the blowing advects fluid away from the wall, while the outer
stagnation-point flow advects it towards the wall. This means that viscous effects are
confined to the neighbourhood of the value of ¥ at which the normal velocity vanishes,
i.e. at which f = 0 (figure 5). Suppose f(37) = 0 at 9 = 7,; then the inviscid flow outside
the viscous layer is given by

f=mn—=m for n>n, (4.20)

and by
f=bsin[(n—7,)/b] for n <, (4.2b)
where b is a constant (this is the relevant solution of ff” —f'2+ 1 = 0). The boundary
condition f'(0) = 0 requires that 3, = 37, and then the condition f(0) = — V shows

that b = V. The values of ¢, and a, in this limit are thus 1 and 1/V respectively. We
may note that there is continuity of f, f* and f” at » = 5, for the solutions (4.2a, b),
so the boundary layer there will be a weak one; the viscous solution in the boundary
layer is given by

1 f 2 ,
" __ 1 vy = _.; 2
f 2V2l77 erfc(?]/\,2)+,\/ﬂ€ 7}’
where
N =1-17

The concentration distribution

The general solution of the steady form of (3.5b) that satisfies the outer boundary
condition g(c0) = 11is

9(77)=1—Af

an

exp [—o‘f:’f(s)ds] dy’, (4.3)

7
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where 4 is a constant. Then the osmotic flow relation (3.7) and the second of the
boundary conditions (3.65) give

4 =0?V2/p, and B,=ocV({i+oVI), (4.4)
where

1= f: exp [—— crf:f(s)ds] dy. (4.5)

Asin § 2, the quantity of greatest interest is the ratio of the actual osmotic flux to the
flux that would be predicted if (1.1) were used with AC = C,: that is

J oV

7=']‘;'O;=7f1—‘=9(0)=(1+UVI)_1- (4.6)

From this system of equations we can in principle predict y as a function of 8, (cf.
equation (2.4)). However, in an experiment the physical properties of the solvent and
solute would be known, and from a measurement of J we would wish to derive the
value of P; in dimensionless terms we would know ¢ and V, and seek to predict £,,.
In view of the fact that f(5) depends on V, and hence I depends on ¢ and V, this is
also the most convenient way to derive the theoretical results: given V and o, deduce
g, and y.

Given f(#) from the flow field solution, it is in principle a simple matter to calculate
I numerically from (4.5). However, since o is always very large in practice it is both
easier and more illuminating to perform an asymptotic analysis of the integral.
Standard methods show that the dominant contribution to the integral in (4.5) (and
in (4.3)) comes from the neighbourhood of 3 = 7,, where f(3,) = 0, as predicted in § 3.
If V is not very small, so that 75, is not too close to zero, we find that

3
I = (2:@1) e~ 7Fq {1 + erfZ -+ 0[(12(0'(1%)‘_%]}’ (47)

where

%o aga }
B~ ["fan and z=90(%R)"

The dimensionless thickness of the layer of high concentration gradient around
7 = 7, can be seen to be O(c~%), as long as a; = O(1). When V > 1, so that 5, = 3nV,
a, = 1,a,~ 1/V and F, ¥ — V?, equation (4.7) yields

27

3
= (F) eV [14+0(1/Vat)], (4.8)

with the consequence that y, from (4.6), is very small and S, (4.4) is enormous. Such
values are unlikely to be realistic.
When V « 1, 7, is small and f can therefore be expanded in powers of 7:

f) ~— V+%-2772+0(773), (4.9)

where a, ~ 1233 from (4.1). Thus we have

1
N R (2V/ay)t, a, ~ (2Vay)} and F,~ -3V (——) ,
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so that (4.7) becomes

1 1 %
Ix %(777,) (72;2) exp {g A% (0722) }{1 +erf [0 VE(2/a,)14+ 001 V-H}.  (4.10)
This expansion clearly breaks down when V = O(c—#), which is also the value at
which the exponential in (4.10) becomes O(1) and the error function ceases to be
approximately equal to 1. At this value, too, I = O(c—%) and VI = O(1), so that y
is now O(1); B, = O(o?) is still large.

A new expansion procedure is thus required when ¥ = O(c—%¥). A rescaling of the
variables on the lines envisaged in §3 makes the procedure less cumbersome. We
introduce (cf. (3.10))

g =ctp, V=0V, I'=ctl, (4.11)
which are all expected to be O(1), and from (4.4) and (4.6) we obtain
B =VQa+I'v)y, y=0+I'V) L (4.12)

The integral (4.5) can again be approximated using (4.9) for f(#), and since 7, is so
small, of O(c—4), it becomes simpler to expand about 5 = 0 instead of 7 = 7,. Intro-
ducing { = 0*7; (cf. (3.11)) the integral becomes

- f " exp [V'g—‘igga] dg+0(oH),

which can be denoted by
271
I'z>mn ((;—) Hi[V'(2/ax)%] (4.13)
2

(Abramowitz & Stegun 1964, p. 448). Hi(z) can be represented as an integral of Airy
functions and it is readily shown that

') 27z 3%:2
Hi(z) ~ Y {1 + Te) + 2F(§»)} as z-—>0, (4.14)
(n%2)~texp (32)} as 2z-—>o0. (4.15)
Thus, as V' — o0, oroni
I~ (m) exp {3 V'#(2/a,)}}, (4.16)

which is the same as (4.10) with erf{ } = 1. The whole range of V is now covered:
(4.13) must be used for V = O(c—%) (V' = O(1)), while (4.16) should be used for
0% < V < 1, and the full expression (4.7) is needed for ¥V = O(1), reducing to (4.8)
when V > 1.

The above analysis shows that it is only when V is as small as O(o—%) that the
scaling appropriate to a concentration boundary layer in the absence of osmosis,
with thickness §, given by (3.9), is appropriate. For larger V the layer has dimension-
less thickness O(o—%) (or O(c—3V—%) when V < 1) and is centred on 3 = 7,.

The results of this analysis are presented in the form of a graph of ¥ against 8’
(log scale) in figure 6. Values of V' are also shown on the abscissa; it can be seen that
V' is only 3 for a value of 4’ in excess of 1000, corresponding to a value of y of about
0-005. Over this range of parameters, then, it is evident that V' is not large, and (4.13)
was used to plot the solid curve on figure 6. The broken curves on figure 6 are the
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FicurEe 6. Graph of y against 4, as computed from (4.12) and (4.13); values of V' are also marked
on the abscissa. The broken curves are those obtained by using (4.14) to evaluate (4.13) at small
values of V', and by using (4.15) at large V’. The dash-dot curve and the dotted curve represent
the asymptotic expansion (4.17), and its leading term, respectively.

approximate results for small and large V', obtained by using (4.14) and (4.15) respec-
tively as approximations to the function Hi(z). It can be seen that together they give
an extremely good overall approximation, and there would be little loss of accuracy
if the small V" approximation were used for V' < 1 (8’ < 5-3) and the large V' approxi-
mation for V' > 1. Since the result for large V' is the same as that for small V, (4.10)
with erf{ ] = 1, the only possible source of inaccuracy in the solid curve of figure 6
is the fact that a, is not identically equal to 1-233. The results were recalculated with
@, given by (4.1) and with V evaluated from V' on the assumption that ¢ = 103 (this
is a realistic value; see § 6); figure 6 was not perceptibly changed.

Finally, we may note that the large V’ expansion of I’ in (4.16) can be inverted and
used with (4.12) to give an asymptotic expansion for y as a function of ' when g’ is
large (but not solarge that (4.10) isinvalid). When a, is put equal to 1-233 this expansion

is

1-115 (log #')} 1 [log log,b"]}

= b 1- 5 (2-128 + Zloglog fY+ 0 | —=——25 |1 - 4.17)

This expression is also plotted on figure 6 (the dash-dot curve), where it is seen to be

considerably less useful for moderate V' than that obtained from the full large-V’

expression (4.16). The leading term of (4.17) is plotted as a dotted curve; the curve
representing the full solution passes between these two asymptotic representations.

5. The time-dependent problem

It is to be expected that the steady-state solution of the previous section will
eventually be realized whatever the initial conditions, at least assuming that the
stirring remains steady. The main question of experimental interest concerns the
length of time required to establish the steady state. Suppose that the stirring is
turned on and then, at time ¢ = 0, solute is introduced into the stirred chamber so
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that O = C, at some finite distance from the membrane. The development of the
steady-state concentration distribution will then take place over two or three time
scales. There will first be a rapid adjustment as solute is advected to the wall by the
stirring motion; the relevant, convective time scale is «~'. Then osmotic flow will
begin and there may be a further convective period, as the diffusion layer around
7 = 7, isset up, followed by a more gradual, diffusive settling down to the steady state.
The time scales for these two stages are a~1y,/V for the first (= O(a~1) when V > O(1);
= O(o"1V~%) when V < 1) and 82/D, where 8, is the concentration layer thickness,
for the second. In the most relevant case,in which ¥ = O(c—%) and 6, is given by (3.9),
these two time scales merge into one, of O(a—lo}). What multiple of the diffusive
time scale must be allowed before the steady state may be assumed can be de-
duced from a linearized theory in which the dependent variables are represented as
small perturbations about their steady-state values.

The time-dependent problem is defined by equations (3.5) to (3.7) (plus an initial
condition). If we represent the steady-state solutions of §4 by the suffix zero, we can
write

f(77, T) = fo(77) +f1(ﬂ1 T)7
9, 7) = go(n) +9:(1,7),
Vir)=V,+1;
substituting into the equations and linearizing, we obtain a homogeneous linear

problem. This suggests that the solution may be represented as the sum of an infinite
number of exponentially decaying terms of the form

fim, 7y =V Fpe™, g1 =VGn)e*, V,=TFer,

where V] is an arbitrary constant whose value will depend on the initial conditions
but has no effect on the determination of k. We therefore assume such a form, and
derive the following set of equations and boundary conditions (where a prime denotes

d/dy):

F"4+foF"—2fF' +ff F = —kF”} (5.1)
F(o) = F'(0) =0, F(0)= —1; '
1
iy A ‘L F = —
S G oG g F = kG, : 52
G(0) = 0, 201,G(0) = G'(0), G(O) = a/p,;

in the derivation of this the relation oV}, = £,9,(0), from (3.7), has been used. The
problem defined by (5.1) and (5.2) is clearly an eigenvalue problem for k; the final
approach to the steady state will take place at a rate defined by the eigenvalue with
smallest real part. We accordingly concentrate on evaluating this eigenvalue, for
various values of o and of 3,.

The first thing to notice is that the problem for G influences the problem for F only
through the term involving k in (5.1). Thus, as long as k is not very large, the length
scale for variations of F will be the same as the length scale for variations of f;. This
means that 7 is the appropriate variable for F; in particular, we will have

Fp) = — 1+ Jay(k) 7? (5.3)

as 7 — 0, where «, is a constant, depending on %, which remains O(1) as long as k is
not large.
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Ficure 7. Graphs of the real and imaginary parts of the eigenvalue &’ with smallest real part,
against #’, computed from (5.4); values of V’ are also marked on the abscissa.

Now we turn to the problem for G(7). As in the previous section we assume that o
is large, and in view of those results (figure 6) we further restrict attention to O(1)
values of V' = ¢V, This means that the dimensionless length scale for concentration
variations is o1, so that the independent variable should be { as defined in (3.11);
this has the further implication that the appropriate time variable is 7" rather than 7.
We therefore introduce the corresponding inverse time constant &', where

k=ot;

hence k is expected to be small and (5.3) to be valid. Indeed, with this scaling, (5.3)
gives
Fop)x —t1+3o8a, 22 — 1,

so that the dependence of F on k has no effect on the determination of G.
If we make one further substitution, writing G({) = (o%/8’) H({), the problem re-
duces to the following:

Hy+ (= V' + 4, 02) Ho+ K H = V2exp (V'E=4a,0),
H(o) =0, H(0)=1, Hy(0)=2V" (5.4)

The objective is to calculate the eigenvalue k&’ with lowest real part for a range of
values of V', which should at least include 0 < V' £ 3 in order that all the 8’ values
of figure 6 may be covered.

The problem defined by (5.4) is not amenable to analytical solution. When V' = 0
it is a simple matter to prove that k’ is real, but even in that case there is no obvious
solution for H; in general it is not possible to prove that &’ is real. The problem has
therefore been solved numerically for ¥’ < 3, by means of Runge-Kutta integration
of the real and imaginary parts of the equation and a modified Newton-Raphson
method for locating the relevant eigenvalue &'. When V' is less than the critical value
Ve~ 1-12 then £’ is real, but when V' exceeds this value k¥’ becomes complex (the
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second eigenvalue remains real until a higher critical value of V' is reached). A similar
phenomenon was reported by Pedley & Fischbarg (1980) for the standard unstirred
layer model; what it means is that the final approach to the steady state takes the
form of a damped oscillation when ¥V’ > V. The real and imaginary parts of k' are
plotted against g’ (log scale) in figure 7; the critical value of §’, corresponding to
V' = V,,is 8, ~ 7-4. It can be seen that, for values of 4’ in the range 0 to 1000, the real
part of £’ lies between about 1 and about 5. Thus for all £’ in this range the time scale
for decay of the perturbations is O(a%¥/a), the time scale for diffusion across the con-
centration boundary layer (cf. equation (3.11)). For the record, the numerical results
yield the following expansion of " when V' is small:

k'~ 090+ 1-32V'+0-28V"2. (5.5)

6. Discussion

Application of the above theory depends on the order of magnitude of the dimension-
less parameters f#, and o in an experiment. Let us consider experiments in which the so-
lute is sucrose and the solvent water. Then D ~ 5 x 10-¢ cm2s~! while » ~ 1 x 10-2 ¢m?
s~! so that o ~ 2 x 103. Concentrations used in experiments in vitro vary widely; a
value close to the top end of the commonly used range is 300 mmol per litre, or
C, = 3 x 102 mol em~3. Values of the (inferred) osmotic permeability P also vary
widely according to the membrane under study; from House (1974) values of between
2:0x 10~2and 6-1 x 10~ cm s~ (mol em—3)-1 can be inferred for cell membranes, while
a value of 4-4 cm s~! (mol em—3)~! has been measured for rat kidney proximal tubule
(an epithelium). The value may perhaps be made higher still by the careful manu-
facture of an artificial membrane, although in that case, as in the case of the proximal
tubule, the membrane is so permeable that sucrose can leak back across it, cutting
down the effective value of P.

Finally we must ascribe a value to the stirring parameter «. To do this, imagine a
chamber stirred by two counter-rotating cylinders (or paddles), as depicted in figure
2(a). Assuming that the cylinders are not very close to the membrane, the flow near
the stagnation point (but outside the viscous boundary layer) can be estimated from
the irrotational motion due to two line vortices, located at the centres of the cylinders,
in the presence of a plane boundary; their strength would be such as to give approxi-
mately the correct tangential velocity on the cylinder boundaries. If the cylinder
radii are a, if their centres are distance 2b apart and distance d from the plane, and if
they rotate with angular velocity €, then it is readily shown that

8abd 2

- T
This will be approximately valid as long as a/b, a/d and the inverse Reynolds number
v/Qad are reasonably small. If we take @ = 0-2cm, b = 0-5cem, d = 1-0cm and
Q = 27f s, thena = 0-64f s~1,sofor arotation rate of 10 cycles persecond @ = 6-4s77,
while for 1 c¢ycle per second a = 0-64 s1.

Thus the value of 3, (equation (3.8)) is expected to range from 0-05 and below up
to about 33. It follows that £’ (equation (4.11)) is unlikely in biological experiments
to rise above about 2-6, which is less than f,, so that the approach to the steady state
is in general likely to be monotonic. However with g’ = 2:6, the predicted value of y
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is about 0-29 (figure 6), which means that at values such as this the value of osmotic
permeability inferred from (1.1) with C = C, is likely to be only 29 %, of the true value.

In view of the rather limited magnitude of £’ in practice, and since the small ¥’ or
p’ approximation is accurate for V' < 1, (8’ < 5-3) from figure 6, it may be useful to
set down the first few terms of the small V' expansion for y (we give the expansion in
powers of V' rather than g’ because V' = £’y is the measurable quantity in practice).
Using equations (4.12) to (4.14) we obtain

vy~ 1—1-513V +0-992V2; (6.1)

this is expected to be adequate for most practical applications.

We began this paper by asking whether an ‘equivalent unstirred layer thickness’
d could be defined for an experiment in which the outward advection of solute by the
osmotic flux is limited by the inward advection of the stirring rather than by back
diffusion. A scale for the boundary-layer thickness, &,, has been shown to be o—¥(v/a)t
(from (3.9)), but in view of the different mechanism at work and the different shape
of the concentration profile (figure 1) it seems unlikely that merely putting &, into
the definition of § (equation (2.6)) will allow v to be predicted accurately by (2.4).
However, the shape of the graph in figure 6 is very similar to that of the curve of y
against B obtained from (2.4) (Pedley & Fischbarg 1978, figure 4), and it turns out
that a simple rescaling causes the two curves very nearly to coincide. If we take
B = bp”", with b chosen so that the value of ' when y = 0-5 from figure 6 is the same
as the value of §” when y = 0-5 from (2.4) (that is, b = 1-59), then it can be seen from
table 1 how close the coincidence is for 8’ < 102. This is equivalent to the statement
that if we define an unstirred layer thickness

8 = b8, = 1-59 (2)§ (5))", (6.2)

14 a

then equation (2.4) can be used with acceptable accuracy to predict the effect of the
layer on osmotic flow. This means that physiologists may continue to use their familiar
formula, but without having to postulate a rather arbitrary value for 8, at least as
long as the stirring is of the form proposed here. This may prove to be the most
significant result of the present work. We may note that a similar result may be ob-
tainable for the other types of stirring depicted in figure 2; the corresponding theory
for some of these cases is in progress.

porp” v, present theory v, from (2.7)
0-01 0-988 0-984
0-05 0-935 0-929
0-1 0-874 0-871
0-5 0-613 0-614
1-0 0-472 0-472
5:0 0-198 0-201
10-0 0-125 0-129
50-0 0-038 0-040
100-0 0-019 0-024
500-0 0-008 0-006

TasLE 1. Comparison of the values of y predicted for various values of §” from
figure 6, and those predicted for the same values of 8”7 (= £/1-59) from (2.7).
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s.p.m. C,=Cpy

CZ = Cbz -~ ]
Direction of
P osmotic flow
A
C,=0 =0

Ficure 8. Sketch of the concentration distributions on the two sides of a semi-permeable mem-
brane when the bulk concentration is non-zero on both sides. Note that solute is piled up against
the membrane on the left, but swept away from it on the right.

This paper has examined the interaction of osmosis and stagnation-point stirring
in one particular case, in which the membrane is a pure semi-permeable membrane
(i.e. is impermeable to solute) and in which the solute concentration on one side of
the membrane is identically zero. In a real experiment neither of these is likely to be
the case. In order to generalize the theory one would need (a) to modify the boundary
conditions (3.3) and (3.4), and (b) to consider another concentration boundary layer
on the other side of the membrane. As far as (a) is concerned, there exist phenomeno-
logical equations relating the flux of water and salt across a leaky membrane to the
concentration difference across it (House 1974). However, use of these requires know-
ledge of the solute permeability of the membrane as well as of two further dimension-
less constants known as reflexion coefficients. These are usually taken to be equal to
each other, but Hill (1979) has pointed out that there is no physical reason why they
should be equal, with the consequence that we do not know the value of both and
cannot apply realistic boundary conditions. There is therefore no point in constructing
an elaborate theory for the case of a leaky membrane.

Nevertheless, most experiments with biological membranes will have non-zero
solute concentrations on both sides, so in addition to sweeping away solute on the
side towards which it is directed, the osmotic flow will cause solute to pile up on the
other side. This will further cut down the concentration difference across the mem-
brane, and means that the above estimate of 7y is conservative. However, in the case
of piling up, the concentration boundary layer will tend to be thinner than in the
sweeping-away case, because both the stirring and the osmotic flow advect solute
towards the membrane, so its effect will be smaller. The effect can be analysed in a
manner similar to the above: let C,,, C, be the bulk solutions on the two sides of the
membrane (figure 8) with C,;, > C,, so that osmotic flow is to the right. Let the steady-
state concentrations be C, = Cy,¢,(%,) and C, = Cy, g5(7,), where 5, = —95, = (a/v)ty,
and it is assumed that the stirring parameter « is the same on the two sides of the
membrane. The dimensionless boundary conditions corresponding to the second of

(3.6b) are then
oV9,(0) = 9:(0) and oVg,(0) = —g5(0),
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while the osmosis condition (3.7) becomes

oV = B,[0,9,(0) — (0, — 1) g,(0)],
where £, is defined as in (3.8) with C,, — C,, for C;, and where

G
f, = —2 (6.3)
' Cbl —Cye
The case solved in §4 is that with 6, = 1. The solutions for ¢, and ¢, are both of the
form (4.3), and it can readily be shown that the ratio y of actual water flux to predicted
flux is
_ 6 6,1
VT (v oVl 1oVl
where I, and I, are defined as in (4.5).

We now restrict attention to the case where V' = o#V = O(1), so that the flow
functions f,(7,) and f,(7,) are approximately given by

(6.4)

a a
hn) = =V+3u, falm) =+V+3 75
with the same value of a, in each case. We can again rescale the quantities [;, I, and /3,

as in (4.11), and we obtain 'y = V' (as before) and (6.4) becomes

6 61
LA 7 (e ) [

(6.5)

where I is given by (4.13), and I is the same but with — V' for V’. Given 6,, (6.5)
can be used in place of (4.12) to compute y. The expansion for small V', already seen
to be most useful in practice, is in this case

vy~ 1-1-513(20,—1) V' +0-9927°2, (6.6)

which should be compared with (6.1). These results show that the effect of a second
concentration boundary layer on the other side of the membrane may be quite large
if 0, islarge, i.e. if the concentration difference during the osmotic flow is superimposed
on an already large concentration on each side. Furthermore, rearrangement of (6.5)
shows that for all §, > 1 there is an upper bound on the observable osmotic flow in
this case, i.e. on V', since y > 0 and hence

L= V'[0,1,+(0,— 1) I}] > 0. (6.7)

We know from (4.8) that I —>o0as V' — o0, so if §, > 1 then V' is bounded as £’ in-
creases. A similar bound arises in the standard model (§ 2) where the equivalent of
(6.7) is

v =0, —(0,—1)efr > 0. (6.8)
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Note added in proof (3 November 1980).

After this paper went to press I was made aware of the paper ‘ Ultrafiltration of
proteins in stagnation flow’ by A. A. Kozinski & E. N. Lightfoot (4.1.Ch.E.J. 17,
1981, 1971) in which ultrafiltration (similar to reverse osmosis) in the presence of
stagnation point flow was examined numerically. The problem of this paper was
not considered, however.





